

PHOTOMETRIC STUDY OF YOUNG SOLAR ANALOGS

A Honors Thesis By Sean Morrison Tuesday, April 26, 2011

Outline

- What is a YSA?
- Theoretical Background
- History
- Selection of YSA Stars for Research
- Spectroscopic Research at Appalachian State University
- Observatories and Telescopes
- Reduction and Photometry Pipeline
- Flat-Field Experiment
- Results/Conclusion

Goal

- To gain a window into the conditions of the early solar system when life was establishing a foothold on the Earth
- To gain a window into the conditions around YSAs

What is a YSA?

• A star with:

- age between 0.3 and 1.5 Gyr
- Spectral Type: Late F- to early K-type

Theoretical Background Stellar Structure and Sunspot Physics

- Stellar Atmosphere
 - Photosphere
 - Chromosphere
 - Corona
- Flares
 - Extend from the photosphere to corona
 - Magnetic Reconnection
- Sunspots
 - Regions of strong magnetic fields in the photosphere

Theoretical Background Sunspot Physics: Babcock Model

 Sunspots formed from a progressive tangling of the magnetic fields due to the differential rotation of the Sun

Theoretical Background Sunspot Physics

- Areas of cooler temperatures
- Intense magnetic fields inhibit convection

- Faculae:
 - Result of cluster of magnetic fields
 - Brighter then the surrounding atmosphere

Theoretical Background Stellar Evolution

- Rotation slows as stars age due to loss of angular momentum and energy by the Solar winds
- Activity levels decrease as the star ages
 - Babcock Model
 - Entanglement is reduced

History: Early Research

Ca II K & H Monitoring at Mount Wilson Observatory

- 1966 2003
- Mid-F to M2
- I5 fit our definition
- Results
 - 60% Activity cycle similar to the sun
 - 25% No well defined cycle
 - 15% Little to no variation in activity

"Sun in Time"

- 1988 -2008
- G0 to G5
- 50 Myr to 9 Gyr
- multi-wavelength study
- Results
 - Early Sun Rotates 10x faster then current
 - Refined the rotation-ageactivity relationship of Solar like stars

History: Current Research

Lowell Observatory Solar-Stellar Spectrograph

- 1988-?
- Direct comparison between the Sun and solar analogs
- 28 stars
 - 6 YSAs
 - Rest are "Solar Twins"
- F8 to G8 (most G0-G2)
- Simultaneous Photometry and Spectroscopy
- Inverse correlation between brightness and activity in YSAs

Research At Appalachian State University

Selection of YSA Stars for Research for Spectroscopic and Photometric Research at Appalachian State University

Selected From the Nearby Star Project
31 High Priority Stars
Within 40 pc
F8 to K2
0.3 to 1.5 Gyr
V mag: 8 to 5

YSA Sample and Stellar Characteristics							
Name	$_{\rm SpT}$	V	Age (Gyr)	Name	SpT	V	Age (Gyr)
HD 5996	G9 V (k)	7.67	0.5	HD 124694	F8 V	7.19	0.6
HD 9472	G2+V	7.64	0.4	HD 130322	G8.5 V	8.04	1.2
HD 13531	G7 V	7.35	0.3	HD 131511	K0 V	6.01	0.3
HD 27685	G4~V	7.84	0.7	HD 138763	F9 V	6.53	0.3
HD 27808	F8 V	7.12	0.7	HD 149661	K0 V	5.76	1.4
HD 27836	G0 V (k)	7.60	0.7	HD 152391	G8.5 V (k)	6.64	0.7
HD 27859	G0 V (k)	7.80	0.7	HD 154417	F9 V	6.01	0.5
HD 28394	F8 V	7.02	0.7	HD 170778	G0-V (k)	7.50	0.3
HD 42807	G5 V	6.44	0.3	HD 189733	K2 V (k)	7.68	0.5
HD 76218	G9- V (k)	7.69	0.5	HD 190771	G2 V	6.17	0.7
HD 82885	G8+V	5.41	1.6	HD 192263	K2 V (k)	7.79	1.0
HD 96064A	G8+V(k)	7.64	0.3	HD 206860	G0 V	6.00	0.4
HD 101501	G8 V	5.32	1.4	HD 209393	G5 V (k)	7.96	0.5
HD 102195	G9.5 V (k)	8.06	1.1	HD 217813	G1 V	6.66	0.7
HD 113319	G4~V	7.52	1.5	HD 222143	G3 V (k)	6.58	0.8
HD 117378	F9.5 V	7.64	0.5				

Call K & H

Dr. Gray's Spectroscopic Research at Appalachian State University: Ca II K & H

Activity Cycles

Flare Events

OBSERVATORIES AND TELESCOPES

University of North Carolina at Chapel Hill's PROMPT Array/Skynet

- 0.41-m Ritchey-Chretien telescopes
- Rejected in the long run because of limitations in precision
- Flat-fields exhibit gradients and abnormalities
 - Clamshell dome
 - Open truss design

Appalachian State University Dark Sky Observatory: Piggyback Telescope on the DSO 0.8-m

5-inch (0.127-m) f/10 Celestron SBIG ST-402ME CCD 6-inch wide-field f/9 Ritchey-Chrétien telescope SBIG ST-8300 CCD

Appalachian State University Dark Sky Observatory:

The Automated Photometric Telescope on a Robotic Mount

Orion Apex 102mm SBIG ST-402ME CCD

6-inch wide-field f/9 Ritchey-Chrétien telescope SBIG ST-8300 CCD

Reduction and Photometry Pipeline

- Image Reduction and Analysis Facility (IRAF)
 - imageproc_final.cl
 - Forms master darks and flats for each filter and applies them to the images
 - Combines the images in a series for each filter in to a combined image for each filter.
 - For a higher signal to noise
 - Imexamine (iraf task)
 - full width at half maximum (FWHM) and sigma of the point spread function
 - photometry.cl
 - DAOFind
 - Phot

Flat-Field Experiment

Flip-Flat-Field

Sky Flat-Field

Filter	Mean	STDDEV	Min	Max
В	1	0.004093	0.9823	1.043
Ι	1	0.005586	0.8959	1.069
V	1	0.003117	0.9860	1.022

Results HD 189733: Sample Image

Results HD 189733

Results HD 189733 Multiple Comparison Star Test

HD 189733 V Series 1

Star	X	Υ	V mag	err
1	378	249	11.588	0.003
2	551	382	14.727	0.033
3	248	304	14.559	0.028
4	700	262	12.826	0.027

V mag avg(2,3,4) = 14.037mag(1) - avg(2,3,4) = -2.449

HD 189733 V Series 2

Star	X	Υ	V mag	err
1	372	243	11.591	0.003
2	545	376	14.715	0.029
3	242	299	14.573	0.026
4	694	256	12.843	0.007

V mag avg(2,3,4) = 14.044mag(1) - avg(2,3,4) = -2.453

Difference: -2.449-(2.453)=0.004

Results HD 209393

The Effect of Clouds on the Combined Images

The Effect of Telescope Drift on the Combined Images

The Effect of Focus Change on the Combined Images

Conclusions

- PROMPT results disappoint
 - systematic and random errors on the 4% level
 - Small field of view (10')
- Luminescent Flip-Flat
 - photometry stable to better than 1%
- Light Curves
 - Periodic variations visible in the light curves.
- Multiple Comparison Star Techniques
 - milli-magnitude precision
- Things to Consider
 - Effect of weather
 - Pointing issues on the DSO 0.8m
- Techniques, procedures, and equipment that I have establish will be used in the long term project.

References

- Wilson, O.C. 1978, ApJ, 226, 379
- Baliunas, S.L. et al. 1995, ApJ, 438, 269
- Hempelmann A., Schmitt, J., Baliunas S.L., & Donahue, R.A. 2003, AA, 406, 39
- Favata, F., Micela, G., Baliunas, S.L., Schmitt, J.H.M.M., Gudel, M., Harnden Jr., F.R., Sciortino, S., & Stern, R.A. 2004, AA, 418, 13
- Gaidos, E.J., Ganzalez, G., Gudel, M., Heap, S.R., & Henry, G.W. 2001, "Young Stars Near Earth: Progress and Prosepects", 244, 81
- Lockwood, G.W., Ski, B.A., Henry, G.W., Henry, S., Radick, R.R., Baliunas, S.L., Donahue, R.A., & Soon, W. 2007, ApJS, 171, 260
- Soderblom, D.R. 1982, ApJ, 262, 239
- Soderblom, D.R. 1983, ApJS, 53, 1
- Reichart, D.E., Ivarsen, K.M., Haislip, J.B., Nysewander, M.C., & LaCluyze, A.P. 2006, Nuvo Cimeto C, 28, 787
- Hall, J., Henry, G.W., Lockwood, G.W., Ski, B.A., & Saar, S.H. AJ, 138, 312
- Guinan, E.F., & Engle, S.G. 2009, International Astronomical Union, IAU Symposium, 258, 395

Acknowledgements

- I would like to acknowledge Dr. Richard O. Gray, for his guidance and support.
- I also wish to thank Dr. Jon M. Saken for his help in setting up the robotic telescope, and Michael D. Hughes for his help in debugging the robotic mount when it malfunctioned.
- I would also like to acknowledge the North Carolina Space Grant and Appalachian State University's Office of Student Research for their grants for research and equipment, which helped make the research possible.
- Finally, I would like to thank my family, friends, and especially my girl friend, Mandy Shoaf, for the support and understanding they have all shown.

